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ABSTRACT 

We construct and study the twisted reduced SU(N) X 

SU (NJ chiral model in two dimensions. The equivalence of 

the reudced model to the field theory is established by 

examining the Dyson-Schwinger equations and weak coupling 

perturbation expansion.We evaluate the internal energy and 

two-point correlation function by extensive Monte-CarSo 

simulations for N=12,24 and 36.We find a non-analyticity 

near the weak coupling edge of the crossover region in which 

the system flips back and forth between the "normal" state 

and one characterised by a strongly disordered correlation 

function. 
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INTRODUCTION 

It has been shown recently that at N=m field theories 

with SU(N) or O(N) internal symmetry become equivalent to 

matrix models living at a single site [l-31.These reduced 

models have made numerical simulations of large N theories 

practicable.There are two distinct types of reduced models 

which reproduce the corresponding field theory. The first 

class,known as Quenched Eguchi-Kawai (QEK) models represents 

translations in the diagonal part of the internal symmetry 

group [2].However, particularly for gauge theories,this 

turns out to be rather cumbersome,and a much simpler version 

has been proposed -the Twisted Eguchi-Kawai (TEK) models. 

In TEK models,translations are represented by internal 

symmtery matrices which form a 't Hooft alqebra. 

The TEK models are particularly well-suited for 

numerical computations. Apart from their simplicity, they 

have a weaker dependence of N on the volume of the system. 

For QEK models to work, one must have N 2 La (where L is the 

size of the box in which the parent field theory is 

defined),while for TEK models one has N=Ldj2. This means 

that finite size effects are less severe in TEK models: in 

fact,the finite size corrections are of the same order as 

the leading large N corrections. 

In this paper we shall construct and study the twisted 

reduced SU(N) X SU(N) chiral model in two dimensions. The 

two dimensional chiral model is believed to be in the same 
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universality class as the four dimensional gauge theory [41. 

In fact, studies of the N=3 model vindicate this belief [Sl. 

We have performed extensive mnte-Carlo simulations of 

the TEK chiral model for several values of N.The internal 

energy and the two-point correlation function were measured. 

While the dependence of the internal energy on the coupling 

is in good agreement with the results of the strong and weak 

coupling expansions at the respective ends, we find evidence 

for a strong non-analvticity in intermediate coupling.This 

occurs near the weak coupling edge of the cross-over region. 

The system switches back and forth between two states : one 

characterised by a weakly disordered correlation function, 

the other exhibiting strong disorder. Such strong disorder 

(with correlation functions actually turning negative for 

large separations) is totally out of tune with the general 

trend as one goes from strong to weak coupling. The physics 

of this peculiar behaviour is not clear at the moment. 

The QEK version of the chiral model has been studied 

earlier in the literature [61. In this case a first order 

phase transition in the cross-over region has been reported. 

Our results do not contain any evidence for such a 

transition,although the convergence is Aefinitel~y slow in 

this region. Our simulations have also accumulated lo-100 

times the data of previous studies and,since we study TEK 

models, the finite size effects are considerably smaller 

(,1/5) than previous studies. 

In Section II we define the model. Section III 
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contains a brief discussion of the equivalence of this model 

with the parent field theory via Dyson-Schwinger equations 

and weak coupling perturbation theory. In Section IV we 

summarise the results of our numerical investigation. 
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II.THE MODEL. 

The field theory we shall consider is defined on a 

square lattice by the action: 

s = - px G [u(xy~+~x+,u]+ h.cJ --. (‘1 

“Y 

The twisted model is obtained by applying the reduction 

prescription: 

u(x) -+ BWuD+C'd 

DCX) = -ir (I;=jXF --, (2) 

p=-I 

where T 's are traceless SU(N) matrices satisfyinq the 
lJ 

algebra: 

/; rv = +A3 ( 23’ Y+) 1;‘; “’ (3) 

The reduced action becomes: 

s, = - /^ Ti-(UF Vtlj?+h.c.) --d4) 
PX 

The field theory is invariant under the symmetry SU(N) X 

SU(N)/ZN : 

where P and Q are independent SU(N) matrices. The reduced 

model (4) is ,however,invariant under the symmetries: 

fJ +zu 

S(.9) 0 s+(s) . 
C3 

cI-+ 
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where z is an element of ZN and S(q) is given by: 

SCSI = yp, qp = jnteyer 

Expectation values of invariant quantities are obtained 

by applying the reduction prescription (2) and averaginq 

over the ensemble defined by the reduced action SR with a 

fixed value of the twist n PV' Thus for a typical Green's 

function of the parent theory which respects the full 

symmtery: 

Gp.;) I -77 < U(X,> LJ+<x2> -. . LJ(&a u+w> . . (66) 
the corresponding object in the reduced model is: 

G-J+.) = x <~~x,,~~+&,) DW’J+~k~2~.->R . .(?) 

where < & denotes average in the reduced model. The twists 

n "\, are to be chosen so that the equivalence 

ClCx;) = U*d 
holds. 
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III. EQUIVALENCE TO THE FIELD THEORY 

The equivalence of the reduced model to the field 

theory may be established by considerinq Dyson-Schwinger 

equations obeyed by the Green's functions. These equations 

may be derived in the standard manner (see e.g.Ref[7] 1. 

Consider the foll.owing quantity in the parent field theory: 

7T < xa vex,> u+(x*). . > 
. . . Cs) 

= +-& q&/&3 T-T ~‘x,V&duf~~r).~.] 

where X a are the generators of SU(N) normalised in the 

standard fashion. Now make a change of variables: 

I/@,) + (I + iEL)wq . .. csj 

Under this change of variables, the measure is invariant and 

one has the following equation: 

= < + Tr [ucw &XL) ’ .’ ufcw3 > -f 

~S(x,,xJ {j+ (r, ~uCurdw... u+~r,-Jl x 
L. 

iT [uCwe) . . . . U+Lxn)l> 

- j$ (Tr cu+l%, . . W&J] x 

7-r hx,,,) - U+LXn 13 >j 
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At N=CC. expectation values of products of invariant 

quantities factorise leading to a closed equation for 

,ies of the type G(xi) : quantit 

Q < $j TV f &JcxIYJ+c~L,. . . lcucwu+~x,+p) - uc*tput~~,~33) 

= < + rp [IJ(x,) VfYx2) . ... U+lXn 1.3) + 

tm, xd i”c$ 4 c J I, ~,,u+~~>.~. U~I)~)<;$ ?-+-b&b f-)t*nti) L 
- (A -& [p&)... “(f[J]>(& wJ(%+,)~~~ u+@n$ 

For the reduced model one starts with the translate of (8): 

7-F < ~~xI>~,~~'~~,~.~(X~UD'~~~...> 

=-- ;J d u up[-/3 S,?] Tr [ Dix,) ~afJDtlr3~~ J 
. (12) 

and makes a change of variables: 

CI + (ltiEWU . . 43) 

An identical procedure now leads to an equation which is 

just the translate of equation(l0) apart from additional 

source terms of the generic form: (Cm x, #Xxm) 

.z{< E D(Xm) U Df(*l) DC%) ...I ~+(XI-+,)> X 
< 77 b(x,) u Dflxm) . . . . , h+lxn)> 

_ < ~~ ~[y,,,) &r,) D[xr) . . . - . . D’CYnd> X 

< Tr DCx,) D+&,,) bl%n+~)uD’?~~.+~ 
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where factorisation property has been used. There are 

similar terms for x =x I m; however,the equations for G(x) also 

contain these terms. The reduced model is thus equivalent 

to the field theory only if these terms vanish for all 8. 

In extreme weak coupling fB=m), U is frozen to the unit 

matrix (or a EN-multiple of it) and the extra source terms 

involve traces like: 

77 DCXfw-4 1 

The condition that such traces be non-zero is easily seen to 

be: 

fY2.y Qh- XI), = pJ 

where Pu 's are integers. By an explicit calculation,it may 

be checked that (15) is also the condition for the source 

terms to be non-zero at strong coupling. 

In two dimensions yl" lS necessarily of the form 

nuv=neu". Then (15) becomes: 

(L -“+ . (16) 

Suppose, for a given integer L, n=Lm and N=Lmfl. Then (16) 

shows that if the parent field theorv is defined in a 

periodic box of size L,all pairs of points (x,,x,)for which 

the Dyson- Schwinqer equations may differ for the two 

theories are actually the same point by periodicitv. 

To find the correct choice of m, we investigate the 

weak coupling expansion of the reduced model.One expands 
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I,= W+%*) a+ =Ci Cl?) 

The momenta are generated entirely from the internal degrees 

of freedom. this is seen by expanding a as follows: 

A = T ahcd~ A(9) 

A&) = F(v)+ . (18) where 

2nd t--$w kv = 9/a 

where the k 
P 

's and y's are integers. Since TV's are 

translation matrices in a periodic box of size L, (yL=l 

and there are Ld independent A(q)'s in d dimensions. For 

these to form a compltete basis for the N2 degrees of 

freedom contained in a ,one must have N=L d/2 which gives N=L 

in two dimensions. A detailed analysis of the perturbation 

expansion (along the lines of Ref.[81) shows that this is 

the only choice which lead to identical perturbation series 

for the reduced model and the field theory. We thus 

conclude that at least in the weak coupling and strong 

coupling regions the reduced model with N=L is equivalent to 

the chiral field theory defined in a periodic box of size L. 

We shall assume that the equivalence persists for all 

coupling. The T lJ 's may be chosen to be the standard N X N 

't Hooft twist matrices: 

(c),j- = si+,,j C-CrN> 

(/;I ),j. = 
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We record below the lowest order contributions to the 
internal energy E: 

E 3 ..’ (20) 

in the strong and weak coupling expansions: 

. .(21) 

(E) =: 27% +o(N49 
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IV.NUMERICAL RESULTS 

We have performed Monte-Carlo simulations of the model 

described above for N=12,24 and 36. The matrix U was 

updated by left multiplication with a random SU (N) matrix 

which has non-trivial entries only in a SIJ(2) subgroup. One 

sweep corresponds to goinq through all the SU(2) subgroups. 

The updating matrix was adjusted to obtain an acceptance 

rate of approximately 50% in the standard Metropolis 

algorithm. We measured the internal enerqy defined in 

equation (13) and the two point correlation function: 

G(x) = + Re <E MU’ ut(c+)*l> . .. (22) 

The internal energy was monitored in block averages over 

every ten sweeps, while correlation functions were measured 

in block averages over every 100 sweeps. Typically several 

thousand sweeps were made; in the cross-over reqion we often 

went throuqh as many as 25,000 sweeps. 

Fiqures (1) and (2) show the internal energies as 

functions of the couplinq for N=24 and N=36 respectively. 

The lines represent the lowest order strong and weak 

cpupling results. The agreement with our data is rather 

qood. There is a sharp crossover in the vicinity of B/N = 

0.3. To probe the physics in the cross-over region we made 

long runs with both ordered and disordered starts. Contrary 

to previous reports about the QEK chiral model, we do not 
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find any evidence for a first order phase transition. The 

convergence to equilibrium is rather slow in this region, 

but the histories of internal energy for both hot and cold 

starts converge to the same value. Figure (3) shows a 

typical history at very weak couplinq (data points are block 

averages over 500 sweeps) Figures (4) and (5) show the 

corresponding behaviour in the cross-over regime. 

As we proceed towards the weak coupling edge of the 

cross-over, we observe evidence for some non-analyticity. 

This shows up markedly in the behaviour of the correlation 

function and weakly in the internal energy.In Figure (6) we 

show the behaviour of the correlation function for various 

values of the couplinq excluding the region of 

non-analyticity mentioned above. The correlation length 

increases smoothly with 8. In a region between 8/N=0.48 and 

8/N=0.55 the correlation function exhibits two distinct 

twes of behaviour as we follow the history over many 

sweeps. We have studied this region quite extensively with 

very long runs. Typically, the sys tern would appear to 

settle down after a few hundred sweeps with the correlation 

function behaving in a fashion essentially similar to that 

at lower 8. However, after some time (usually after 4000 or 

5000 sweeps) the system sudedenly flips over to a strongly 

disordered state in which the correlation function turns 

negative for large distances. This latter state usually has 

a slightly lower energy. In certain cases the system again 

flips back to the "normal" state. In Figures (7) and (8) we 
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show plots of G(x) versus x in the two different states for 

B/N=0.5 for N=24 and N=36. Figures (9) and (10) show the 

histories of the internal energy indicating the times at 

which the flips occured. As we go further into the weak 

coupling region this strange behaviour disappears, and the 

correlation function has a normal behaviour albeit with a 

larger correlation length. We have checked this by 

performing runs with as many as 48,000 sweeps in very weak 

coupling. 

We emphasize that the non-analyticity discussed above 

is not very apparent in the hehaviour of the internal 

energy; in fact, one would very likely miss it completely 

unless one monitors the correlation function. Neither is it 

a finite-size effect : the region of non-analyticity is the 

same for ~=12,24 and 36, and disappears completely in weak 

coupling. As yet we do not have any explanation of this 

rather strange phenomenon. 

One of our original motivations behind this 

investigation was to check asymptotic freedom for the model 

and extract values of the mass gap. The correlation 

function does show some exponential fall-off: however,in the 

weak couplinq region the correlation lenqth was too large to 

allow for a sensihle discussion of scaling. Probably a 

better idea of the continum physics may be obtained by using 

an improved action. 

After this work was completed we received a preprint by 

Aneva et.al.191 in which it has been shown that the symmetry 
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in eqn.(S) above may be used to argue that the extra source 

terms (14) vanish for all couplings. 
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FIGURE CAPTIONS 

Fig. 1: Internal energies for N=12. Typical errors are 

0.01 

Fig. 2: Internal energies for N=24. Typical errors are 

0.02.The crosses represent energy averages in the 

"abnormal" state. 

Fig. 3: History of internal energy at very weak 

coupling.Points are block averages over every 500 

sweeps. 

Fig. 4: Histories of internal energy for hot and cold 

starts in the cross-over region for 

N=36,B/N=0.20.Points are block averages over every 

50 sweeps. 

Fig. 5: Histories of internal energy for hot and cold 

starts in the cross-over region for N=36,@/N=0.3 

points are block averages over every 100 sweeps. 

Fig. 6: Typical plots of correlation functions for various 

beta except in the region of 

non-analyticity.Typical error bars are shown. 

Fig. 7: Correlation functions for the two states in the 

region of non-analyticity. 

Fig. a: Correlation functions for the two states in the 

region of non-analyticity for N=36,p/N=0.52. 

Fig. 9: History of internal energy for N=24,p/N=O.S. 

Points are block averages over every 500 

sweeps.Typical errors are 0.02. 
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Fig. 10: History of internal energy for 

N=36,p/N=0.52.Points are block averages over every 

500 sweeps.Typical errors are 0.02. 
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